**CopPair Technical Data Sheet (TDS)**

**Two-Part Conductive Copper Ink for Printed Electronics**

**Product Description**
PrintCB CopPair is a high conductivity, two-part, copper ink used for printing of circuitry and traces in printed electronics by means of screen-printing or micro-dispensing.

**Product Benefits**
- Excellent screen-printing properties
- Sinters in air using standard curing equipment (forced-air, IR etc.)
- Fit for printing on various plastic substrates (Treated or Untreated PET, PEN, Epoxy, Paper, Glass, Aluminum etc.)

**Preparation**: shake the ActiveX solvent well before opening. Then, add its full volume to the MetalX powder, close the lead and shake well. Using a spatula start mixing in increasing severity till a uniform smooth paste is obtained. Let the ink rest 5 minutes - the ink is then ready for use. Watch ink preparation video [here](#).

For small sample preparation, mix 1 gram of ActiveX with every 4.5 grams of MetalX.

- **Pot life**: once mixed, the ink should be within 48 hours
- **Screen printing**: using PE or SS screens, mesh 125 or lower
- **Curing process in forced-air conveyor/box oven**: 5 minutes at 150°C *

*Please note, the CopPair process is triggered by temperature, follow the curing profile above for optimal performance. Curing at lower temperatures harms the ink’s performance.*

- **Resistivity**: 25-30 mΩ/□/mil
- **Average particle size**: 5 microns
- **Typical layer thickness for a single pass**: 10-15 microns

**Composition properties:**
- **Viscosity**: 7,000-10,000cP
- **Thinner**: not required
- **Solids content**: >80%
- **Storage and shelf life**: container should be stored, tightly sealed, in a dry environment. Shelf life is approximately 6 months.

**Recommended Screen properties:**
- **Mesh**: 125 or smaller
- **Emulsion**: solvent & water-resistant systems are recommended.
- **Clean-up**: course clean the screen using water and some detergent, then fine clean using a solvent (MEK, Acyl Acetate etc.).
Application Notes

Substrates
Cl-003 Copper Ink is compatible for printing on a wide variety of films such as the following:
- Treated PETs such as Du Pont Milenex 453, Autostat CT or similar
- Untreated PET and Mylar
- High gloss label papers (application in development)

Films should be heat stabilized.

Adhesion
Tested using 3M 610 Scotch tape (cross hatch testing)
- Treated PETs: 4B
- Untreated PET: 4B
- Paper: no transfer

Environmental Testing
Changes in electrical properties:
- Dry heat (+85°C, 10 days): <+15%
- Humidity (+40°C, 95% RH, 10 days): <+20%
- Thermal shock (-40°C to +150°C, 30 min per cycle, 1000 cycles): <+15%

Flexibility
CopPair is a semi-flexible ink, fit for low-curvature, one-time fixing applications. Optimal flexibility is obtained on 50 micron thick films.
Testing procedure: 1 mm wide line printed on a film is wrapped/unwrapped twice (720°) around an 8mm radius cylinder. Changes in resistance are recorded after 10 cycles.

<table>
<thead>
<tr>
<th></th>
<th>Film Thickness: 50 microns</th>
<th>Film Thickness: 100 microns</th>
<th>Film Thickness: 150 microns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated PET</td>
<td>&lt;20%</td>
<td>&lt;40%</td>
<td>60%-80%</td>
</tr>
<tr>
<td>Treated PET</td>
<td>&lt;20%</td>
<td>&lt;40%</td>
<td>60%-80%</td>
</tr>
</tbody>
</table>

Soldering of Components
Once cured, components can be bonded to the ink using low-temperature (typically bismuth-tin) solder pastes and then reflowed, similar to SMT processing (wire soldering isn’t recommended). To maintain good mechanical strength, adhesive-based bonding the component to the surface is highly recommended.

For further information please contact: info@printcb.com